
Euler's Constant to 1271 Places 

By Donald E. Knuth 

Abstract. The value of Euler's or Mascheroni's constant 

Pi = lim"'. (1 + 2 + + (1/n) - inn) 

has now been determined to 1271 decimal places, thus extending the previously 
known value of 328 places. A calculation of partial quotients and best rational 
approximations to Py was also made. 

1. Historical Background. Euler's constant was, naturally enough, first evaluated 
by Leonhard Euler, and he obtained the value 0.577218 in 1735 [1]. By 1781 he had 
calculated it more accurately as 0.5772156649015325 [2]. The calculations were 
carried out more precisely by several later mathematicians, among them Gauss, 
who obtained 

Py = 0.57721566490153286060653. 

Various British mathematicians continued the effort [3], [4]; an excellent account 
of the work done on evaluation of Py before 1870 is given by Glaisher [5]. Finally, 
the famous mathematician-astronomer J. C. Adams [6] laboriously determined 
-y to 263 places. Adams thereby extended thes'vork of Shanks, who had obtained 
110 places (101 of which were correct). 

Adams' result stood until 1952, when Wrench [9] calculated 328 decimal places. 
Although much work has been done trying to decide whether P is rational, the 
evaluation has not been carried out any more precisely. With the use of high-speed 
computers, the constants ir and e have been evaluated to many thousands of decimal 
places [11], [12]. A complete bibliography for ir appears in [11]. The evaluation of 
Py to many places is considerably more difficult. 

2. Evaluation of y. The technique used here to calculate Py is essentially that used 
by Adams and earlier mathematicians. A complete derivation of the method is 
given by Knopp [7]. We use Euler's summation formula in the form 

n on 

EZf(i) = J ff(x) dx + 2 (f(n) + f( 1) 
( ) k=1 1 

+ E 2j) [f(23-l)() - f(2i-.)(1)] + Rk 

where Bm are the Bernoulli numbers defined symbolically by 

(2) ~~~~~~Bx X 
(2) e=e- 

ex - 1 

With this notation, B1 = -2 B2 = 6 B3 = 0, B4 =-N , etc. Here the remainder 
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Rk is given by 

(3) Rk = (2k + 1)! P2k+l(X)f (X) dx; 

and P2k4l(x) is a periodic Bernoulli polynomial, symbolically 

(4) P2k+l() = ({x} + B)2k+l = (1)k-l(2k + 1) ! E 2 sin 2r7rx 

where {x} is the fractional part of x. 
Now we put f(x) = l/x, obtaining from (1) 

+~~~ 1 1 . n 
+2 +*+ =n 2 2n 

( B2 B1 + 2k(1 -,P1) 
2k+) ax 

2 70 2k n~ ~ ~~~~~~ xk+2 

Taking the limit in (5) as n -* oo, we find 

(6) p't 2 + q2 + *** + B2k - P2k+( . dx) (6) 'Y2+~~2++ 2k j x2k+2dx 

Subtracting (5) from (6) gives 

1 + + 1 1 B2 

+ + B2k _ f P2k+l(X) dX 

(2k) n2k x2k+2 

If the remainder is discarded and we consider (7) as an infinite series in k, it diverges 
as k -* occ It still yields a good method for calculatingy, however, since 

(8) | P2k+l (X) I < (27)2k+1 E 12k+ (2i)k1r-1 rkl 

and by applying Stirling's formula to (8) we obtain 

(9) A P2k+l(X) dx <_V4 (4k)2k 

Put k = 250 and n = 10000 to obtain a remainder 

(10) ~ ~ ~ ~~0 P01x dx < 10-1269, 

(10) y oo 502 ~-<1 

so these values may be used in (7) to determine -y to at least 1269 places. This 
particular choice of k and n was made for convenience on a decimal computer, in an 
attempt to obtain the greatest precision in a reasonable time. 

3. Details of the Computation. The sum 1 + 1 + 
- 

* * + 1 was evaluated as 

(11) 21000 =3+ 
7 

+ _+ 9999 = 9787606036 - 
2 12 99990000 - 9.787606036 

Combining terms in this way reduced the number of necessary divisions. The natural 
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logarithm of 10000 was then determined by 

( 12) in 10000 = -252 In ( 1 - .028) + 200 In ( 1 + .0125) + 92 In ( - .004672). 

Such an expansion was designed for fast convergence and for convenience on a 
decimal computer. It is a simple matter to obtain such an expansion by hand cal- 
culation; we seek integers (x, y, z) such that 2x3Y5z 1 and y > 0. If three linearly 
independent solutions are obtained, one can calculate in 2, in 3, and in 5, and, in 
particular, in 10. If 2x'3y15z" > 1 and 2x23y25z2 < 1, suitable positive integral com- 
binations of (x1, Yi, z1) and (X2, Y2, Z2) will give closer approximations. The 
method is to find small values of (x, y, z) so that x + y log1 3 + z log2 5 0, then 
combine these to get better and better approximations. The expansion (12) cor- 
responds to the solutions (-1,5, -3), (-4,4, -1), and (6,5, -6). For a binary 
computer the extra requirement z ? 0 makes it more difficult, but solutions can be 
used such as 

(12a) in 10000 - 160 in 2-323759 - 864 in 2-113452 + 292 In 2-15385. 

Finally, Bernoulli numbers B2k- 10=8kB2k were evaluated using the recursion 
relation 

(13J) (2+? )~ Bk + 10-8 (2k + 1 Bfk-2 + + 108-8k (2k + I\ B2' \1) 21c /~k \2/ -2/ 2 2 / 
- (2k - 1)/2* 10k. 

From the fact that 

( 14) B2k 2k(2k - 1) 
4~2 

it can be seen that the recursion (13) does not cause truncation errors to propagate. 
Furthermore, 1300 decimal places were used in all calculations. 

When using (13) to calculate B2', first all the positive terms were added to- 
gether, then all the negative terms added together and finally the two were com- 
bined. This gave extra speed to the calculations. Care was also taken to avoid 
multiplying by zero. The evaluation of B2k becomes more difficult as k increases, 
because of the number of terms and the size of the binomial coefficients. Since the 

B,, alternate in sign, the actual error in the calculation of y is less than B5 22 +0.25 

x 10-1271, so the value obtained here should be correct to 1271 decimals. The fact 
that the final answer agreed with Adams' value and that numerous checks were 
made on all the arithmetical routines provides a good basis for guaranteeing the 
stated accuracy of the results. Dr. Wrench has independently verified the approxi- 
mations to 1039 decimal places. 

The present calculations were performed on a Burroughs 220 computer. The 
evaluation of Snooo required approximately one hour, and each of the logarithms 
required about six minutes. Evaluation of the 250 Bernoulli numbers was the 
most troublesome part of the calculations, and the total time for their calculation 
was approximately eight hours. A table of the Bernoulli numbers B' to 1270D has 
been sent to the Unpublished Mathematical Tables file of the journal, Mathematics 
of Computation. 
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4. Determination of Partial Quotients. To find best rational approximations to 

ay, we represent it as a continued fraction 

(15) y = a, + 1 
a2 + 1 

a3 + ... 

PutPi = Qo = 1, Q, = Po = 0, and for i ? 1 

(16) Pi+, = aPi + Pi-, 

Qii = aiQj + Q-1. 

In matrix notation, 

(17) (Pi+, Pi) (al 1) (a2 1) (ai 1) 

Then lim Pl/Qi = Ty. The fractions Pi/Qi represent the best approximations to -y 
in the sense that 

(18) I QjT-Pi I < I qe - p if q < Qj i _ 3. 

We have then ai X 0 (i > 1), if and only if -y is irrational, and the sequence of 
partial quotients as will be periodic if and only if y is quadratic, that is, 

-y = r + Vi, r and s rational. 

For proofs of these well-known results see Cassels [8]. 
The algorithm used to determine the partial quotients as, using limited decimal 

precision, is as follows: 
Set yi = Py, and 

(19) at = [-yi], yi+l = i}'1, i > 1. 

WAe have decimal numbers r1 and si such that 

r I y1 ?< S1 

We successively find numbers ri, si such that 

(20) ri-< ? i < si. 

If [ri] # [si], then the algorithm terminates. If [ri] = [si], then [ri] a, and 

{ri < {-yi} < {si}. 

Hence 

{s' ?<-y+il < {ri}-1. 

Choose decimal numbers r?i1 and Si+, so that rj+j < {fsi} by truncation, si+ ? 
frij-1 by rounding up. Then the algorithm continues, until [ra] X [si]. 

The method used for calculating {si}l- when {fso} has several hundred decimal 
places was adapted from that of Pope and Stein [10]. Approximately six seconds 
was required to obtain each quotient. If t partial quotients are desired, the total 
time is proportional to t'. 
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Table 1 gives the value of -y to 1271 decimal places. Table 2 gives the first 372 
partial quotients of -y. Only 372 are given, although the value in Table 1 would 
have probably yielded over 1000 partial quotients. Table 3 gives for the reader's 
convenience the first few "best rational approximations" to -y. Here the ratio 228/395 
gives a remarkably good value, correct to six decimal places. 

From Table 2 one can compute 

(21) Q373 1.135 X 10"93) 

and we can conclude that if -y is rational its denominator must be larger than Q373 
Another consequence is that only about 385 decimal places of Table 1 were needed 
to obtain the 372 partial quotients. The referee has pointed out that Lehman [14] 
had already calculated the first 315 partial quotients for -y on the basis of Wrench's 
328-place value [9]. These are in perfect agreement with the values obtained here. 

The partial quotients of y, as calculated in Table 2, appear to be "random" in 
some sense. Almost all real numbers have partial quotients satisfying 

(22) lim k'Aa2a3 ... an+1 = K 

where K 2.685 is Khintchine's constant [13]. In this case, 

3V7a2a3 * * a372 2.692, 

a reasonable approximation to K. 

TABLE 1 

Value of Euler's Constant 

.5-7721 56649 01532 86060 651-20 90082 40243 10421 59335 93992 
35988 05767 23488 48677 26777 66467 09369 47063 29174 67495 
14631 44724 98070 82480 96050 40144 86542 83622 41739 97644 
92353 62535 00333 74293 73377 37673 94279 25952 58247 09491 
60087 35203 94816 56708 53233 15177 66115 28621 19950 15079 
84793 74508 57057 40029 92135 47861 46694 02960 43254 21519 
05877 55352 67331 39925 40129 67420 51375 41395 49111 68510 
28079 84234 87758 72050 38431 09399 73613 72553 06088 93312 
67600 17247 95378 36759 27135 15772 26102 73492 91394 07984 
30103 41777 17780 88154 95706 61075 01016 19166 33401 52278 
93586 79654 97252 03621 28792 26555 95366 96281 76388 79272 
68013 24310 10476 50596 37039 47394 95763 89065 72967 92960 
10090 15125 19595 09222 43501 40934 98712 28247 94974 71956 
46976 31850 66761 29063 81105 18241 97444 86783 63808 61749 
45516 98927 92301 87739 10729 45781 55431 60050 02182 84409 
60537 72434 20328 54783 67015 17739 43987 00302 37033 95183 
28690 00155 81939 88042 70741 15422 27819 71652 30110 73565 
83396 73487 17650 49194 18123 00040 65469 31429 99297 77956 
93031 00503 08630 34185 69803 23108 36916 40025 89297 08909 
85486 82577 73642 88253 95492 58736 29596 13329 85747 39302 
37343 88470 70370 28441 29201 66417 85024 87333 79080 56275 
49984 34590 76164 31671 03146 71072 23700 21810 74504 44186 
64759 13480 36690 25532 45862 54422 25345 18138 79124 34573 
50136 12977 82278 28814 89459 09863 84600 62931 69471 88714 
95875 25492 36649 35204 73243 64109 72682 76160 87759 50880 
95126 20840 45444 77992 3(0) 
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TABLE 2 
Partial Quotients 

000 001 001 002 001 002 001 004 003 013 005 001 001 008 
001 002 004 001 001 040 001 011 003 007 001 007 001 001 005 
001 049 004 001 065 001 004 007 011 001 399 002 001 003 002 
001 002 001 005 003 002 001 010 001 001 001 001 002 001 001 
003 001 004 001 001 002 005 001 003 006 002 001 002 001 001 
001 002 001 003 016 008 001 001 002 016 006 001 002 002 001 
007 002 001 001 001 003 001 002 001 002 013 005 001 001 001 
006 001 002 001 001 011 002 005 006 001 001 001 006 001 002 
002 001 005 006 002 001 001 007 013 004 001 002 004 001 004 
001 001 023 001 009 005 002 001 001 001 008 003 002 004 002 
033 005 001 002 001 003 002 004 002 001 005 012 001 017 006 
002 032 005 003 001 006 001 003 001 002 001 018 001 002 017 
001 006 001 021 001 006 001 071 018 001 006 058 002 001 013 
055 001 103 001 014 001 005 008 001 002 010 002 001 001 003 
003 002 001 182 001 004 003 002 004 001 002 001 001 001 006 
001 001 001 006 001 003 002 069 002 001 006 002 002 012 001 
001 001 008 001 002 003 002 001 052 001 025 004 002 018 001 
040 001 018 001 002 014 001 002 002 010 001 001 002 006 071 
007 001 010 002 001 001 001 002 001 003 002 004 001 006 003 
001 001 029 001 029 001 001 003 004 007 001 001 010 002 002 
030 001 021 003 012 001 039 008 007 001 002 001 002 002 001 
001 002 003 001 013 001 002 003 001 001 001 001 008 007 001 
001 001 004 002 005 012 001 015 005 001 007 001 005 001 001 
001 006 005 001 041 001 005 001 009 013 001 001 005 021 025 
008 005 001 014 001 001 001 006 003 001 100 001 265 

TABLE 3 
Best Rational Approximations 

1/2 .50 
3/5 .60 
4/7 .571 

11/19 .579 
15/26 .5769 
71/123 .57724 

228/395 ..5772152 
3035/5258 .57721567 

15403/26685 .5772156642 
18438/31943 .5772156654 
33841/58628 .57721566487 

The author wishes to acknowledge his gratitude to the Burroughs Corporation 
and to the Case Institute of Technology for the use of their Burroughs 220 com- 
puters. 
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